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V1. On the Exact Form of Waves near the Surface of Deep Water.
By WiLriam JouN MacQuorN Ranking, C.E., LL.D., F.R.SS. L. & E.

Received September 27,—Read November 27, 1862,

(1.) THE investigations of the Astronomer Royal and of some other mathematicians on
straight-crested parallel waves in a liquid, are based on the supposition that the dis-
placements of the particles of the liquid are small compared with the length of a wave.
Hence it has been very generally inferred that the results of those investigations are
approximate only, when applied to waves in which the displacements, as compared with
the length of a wave, are considerable.

(2.) In the present paper I propose to prove that one of those results (viz., that in
very deep water the particles move with a uniform angular velocity in vertical circles
whose radii diminish in geometrical progression with increased depth, and consequently
that surfaces of equal pressure, including the upper surface, are trochoidal) is exact for
all displacements, how great soever.

(8.) I believe the trochoidal form of waves to have been first explicitly stated by
Mr. Scorr RUSSELL; but no demonstration of its exactly fulfilling the conditions of the
question has yet been published, so far as I know.

(4) In <A Manual of Applied Mechanics’ (first published in 1858), page 679, 1
stated that the theory of rolling waves might be deduced from that of the positions
assumed by the surface of a mass of water revolving in a vertical plane about a hori-
zontal axis; as the theory of such waves, however, was foreign to the subject of the
book, I did not then publish the investigation on which that statement was founded.

(6.) Having communicated some of the leading principles of that investigation to
Mr. WiLLiaM FrouDE in April 1862, I learned from him that he had already arrived
independently at similar results by a similar process, although he had not published
them. .

(6.) ProposiTioN I.—1In a mass of gravitating liquid whose particles revolve uniformly
in vertical circles, a wavy surface of trochoidal profile fulfils the conditions of uniformity
of pressure,—such trochoidal profile being generated by rolling, on the underside of a
straight line, a circle whose radius is equal to the height of a conical pendulum that
revolves in the same period with the particles of liquid.

In fig. 1 (p. 128) let B be a particle of liquid revolving uniformly in a vertical circle of
the radius CB, in the direction indicated by the arrow N; and let it make » revolutions
in a second. Then the centrifugal force of B (taking its mass as unity) will be

47*n* . CB.
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128 DR. W. J. MACQUORN RANKINE ON THE EXACT FORM

Draw CA vertically upwards,and of such a length that centrifugal force : gravity :: CB: AC;
that is to say, make

AC= 5~

’
4”12

which is the well-known expression for the height of a revolving pendulum making n
revolutions in a second.
Fig. 1.

Then AC being in the direction of and proportional to gravity, and CB in the direc-
tion of and proportional to centrifugal force, AB will be in the direction of and pro-
portional to the resultant of gravity and centrifugal force; and the surface of equal
pressure traversing B will be normal to AB.

The profile of such a surface is obviously a trochoid LBM, traced by the point B,
which is carried by a circle of the radius CA rolling along the underside of the hori-
zontal straight line HAK. Q.E.D.

(7.) Corollaries.—Thelength of the wave whose period is one-nth of a second is equal
to the circumference of the rolling circle ; that is to say (denoting that length by a),

A=27.CA==L,

2n‘l

the period of a wave of a given length A is given in seconds, or fractions of a second, by
the equation
1 21)»

—— ,

n K
and the velocity of propagation of such a wave is

A
nK“%=\/‘L——\/g CA;

results agreeing with those of the known theory.
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(8.) Prorosition IL.—LZLet another surface of uniform pressure be conceived to exist
indefinitely near to the first surface ; then, if the first surface is a surface of continuity,
50 also is the second.

By a surface of continuity is here meant one which always passes through the same
set of particles of liquid, so that a pair of such surfaces contain between them a layer
of particles which are always the same.

The perpendicular distance between a pair of surfaces of uniform pressure is in this
case inversely proportional to the resultant of gravity and centrifugal force; that is to
say, to the normal AB. Hence if a curve {fm be drawn indefinitely near to the curve
LBM, so that the perpendicular distance between them, Bf, shall everywhere be
inversely proportional to the normal AB, the second curve will also be the profile of a
surface of uniform pressure.

Conceive now that the whole mass of liquid has, combined with its wave-motion, a
uniform motion of translation, with a velocity equal and opposite to that of the propa-
gation of the waves. The dynamical conditions of the mass are not in the least altered
by this; but the forms of the waves are rendered stationary (as we sometimes see in a
rapid stream), and, instead of a series of waves propagated in the direction shown by the
arrow P, we have an undulating current running the reverse way, in the direction shown
by the arrow Q. (This is further illustrated by fig. 2.) According to a well-known

Fig. 2.

—_— e

property of curves described by rolling, the velocity of the particle B in that current is
proportional to the normal AB, and is given by the expression
2an.AB.

Consider the layer of the current contained between the surfaces LBM and /bm. In
order that the latter of those surfaces, as well as the former, may be a surface of con-
tinuity, it is necessary and sufficient that the thickness of the layer Bf at each point
should be inversely as the velocity; and that condition is already fulfilled; for Bf varies
inversely as AB, and AB varies as the velocity of the current at B; therefore LBM and
lbm are not only a pair of surfaces of uniform pressure, but a palr of surfaces of con-

tinuity also. Q.E.D.
(9.) Corollary—The surfaces of uniform pressure are identical with surfaces of con-
tinuity throughout the whole mass of liquid.
(10.) Corollary.—Inasmuch as the resultant of gravity and centrifugal force at B is
represented by L
AB
ol

MDCCCLXIII.
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the excess of the uniform pressure at the surface /om above that at the surface LBM is

given by the expression L

AB w7

dp=w - = Bf,

in which w is the heaviness of the liquid, in units of weight per unit of volume. By

omitting the factor w, the pressure is expressed in units of height of a column of the
liquid.

(11.) ProrosrrioN IIL—The profile of the lower surface of the layer referred to in the
preceding proposition is a trochoid gemerated by a rolling circle of the same radius with
that which generates the first trochoid ; and the tracing-arm of the second trochoid is
shorter than that of the first trochoid by a quantity bearing the same proportion to the
depth of the centre of the second rolling circle below the centre of the first rolling circle,
which the tracing-arm of the first rolling circle bears to the radius of that circle.

At an indefinitely small depth A below the horizontal line HAK, draw a second
horizontal line ek, on the under side of which let a circle roll with a radius ca=CA,
the radius of the first rolling circle; so that the indefinitely small depths Ce=Aa. To
find the tracing-arm of the second rolling circle, draw ¢d parallel to CB, the tracing-arm
of the first circle; in ¢d take ce=CB, and cut off eb=-ed ; b will be the tracing-point,
and ¢b the tracing-arm required; for, according to the principle laid down in the enun-
ciation, we are to have

218

CB—cb=eb=Ceo.

Let the second circle roll; then b will trace a trochoid /m. From & let fall 4f per-

pendicular to AB produced ; Bf will be the indefinitely small thickness at B of the layer
between the two trochoidal surfaces. ‘
The proposition enunciated amounts to stating that Bf is everywhere inversely pro-

portional to the normal AB; so that #m is the profile of a surface of uniform pressure
and of continuity. v

To prove this, join Be and ef. Then Be is parallel to ACe, and equal to Ce, and def
is evidently an isosceles triangle, ¢f being =ed. Let AB (produced if necessary) cut the
circle of the radius CB in G; then CG is parallel to ¢f, and the indefinitely small triangle
Bef is similar to the triangle ACG ; consequently AC: AG :: Be=Cec: Bf; or

and therefore
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that is to say, the thickness of the layer varies inversely as the normal AB; and the second
trochoid, lbm, is therefore the profile of a surface of uniform pressure and of continuity.
Q. E. D.

(12.) Corollaries—The profiles of the surfaces of uniform pressure and of continuity
form an indefinite series of trochoids, described by equal rolling circles, rolling with the
same speed below an indefinite series of horizontal straight lines.

The tracing-arms of those circles (each of which arms is the radius of the circular
orbit of the particles contained in the trochoidal surface which it traces) diminish in
geometrical progression with increase of depth, according to the following laws:—

For convenience, let Cc be denoted by dk, CB by 7, and ¢b by r—dr; then

r r
dr:dk.xb-:dk.-z-;—}:,

and the integration of this equation gives the following result :—

Let & denote the vertical depth of the centre of the generating circle of a given surface
below the centre of the generating circle of the free upper surface of the liquid ;

r, the tracing-arm of the free upper surface (= half the amplitude of disturbance);

7, the tracing-arm of the surface whose middle depth is £; then

r,=roe‘t\%=7'oe”¥,
a formula exactly agreeing with that found for indefinitely small disturbances by
previous investigators.

(18.) ProrositioN IV.—The centres of the orbits of the particles in a given surface of
equal pressure stand ot « higher level than the same particles do when the liquid is still,
by a height which is a third proportional to the diameter of the rolling circle and the
tracing-arm or radius of the orbits of the particles, and which is equal to the height due to
the velocity of revolution of the particles.

If the liquid were still, the given surface of equal pressure would become horizontal.
To find the level at which it would stand, we must first find what relation the mean
vertical depth of a given layer of particles bears to the depth Cc=dk, between the
centres of the rolling circles that generate its boundaries.

The length of the arc of the curve LBM described in an indefinitely short interval of
time d? is

2an.AB.dt,
and the thickness of the layer being
_— K’C’i__ "C—E2
Y=t 35 xB

let the product of those quantities be divided by the distance through which the centre
of the rolling circle moves in the same time, viz.

2an.AC.dt,
T2
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and the result will be the mean vertical depth of the layer, which being denoted by d%,

we have
CB?

=ik (1) = k. (1—siez) = k. (1—stts 6750,

The difference by which the mean vertical thickness of the layer falls short of the
difference of level of the rolling circles of its upper and lower surfaces is given by the
following expression,

Q= dley= b ™3 0
AC

and this being integrated from oo to %, gives the depth of the position of a given particle,
when the liquid is still, below the level of the centre of the orbit of the same particle
when disturbed, viz.

%, k__’i.. ¢ AC— i_’f
2AC T2ACT
or @ third proportional to the diameter of the rolling circle and the radius of the orbit of
2, 2,2
the particle; also 21—(—’_%.—7;1 is the height due to the velocity of revolution of the parti-

cles. QE.D. .

(13 A.) Corollary.—The mechanical energy of a wave is half actual and half poten-
tial,—half being due to motion, and half to elevation. In other words, the mechanical
energy of a wave is double of that due to the motion of its particles only, there being
an equal amount due to the mean elevation of the particles above their position when
the water is still.

(14.) Corollary.—The crests of the waves rise higher above the level of still water than
their hollows fall below it; and the difference between the elevation of the crest and
the depression of the hollow is double of the quantity mentioned in Proposition IV.,
that is to say, it is

72 2mr?

ACT A

(15.) Corollary as to Pressures.—An expression has already been given in art. 10 for
the difference of pressure at the upper and under surfaces of a given layer. Substituting
in that expression the value of the thickness of the layer, we find

= AB AC’—CB?
dp=v.22. a6 2028 —y dlc(l—___@) —w. dF,
(as the preceding corollary shows), being precisely the same as if the liquid were still ;
and hence it follows that the hydrostatic pressure at each individual particle during wave-
motion is the same as if the liquid were still.

(16.) In Proposition IIL it has been shown, by geometrical reasoning from the mecha-
nical construction of the trochoid, that a wave consisting of trochoidal layers satisfies
the condition of continuity. It may be satisfactory also to show the same thing by the
use of algebraic symbols. For that purpose the following notation will be used.
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Let the origin of coordinates be assumed to be in the horizontal line containing the
centre of the circle which is rolled to trace the profile of ¢cycloidal waves, having cusps,
and being (as Mr. Scortr RussELL long ago pointed out) the highest waves that can exist
without breaking. In such waves, the tracing-arm, or radius vector, of the uppermost
particles is equal to the radius of the rolling circle; and that arm diminishes for each
successive layer proceeding downwards. :

Let # and y be the coordinates of any particle, # being measured horizontally against
the direction of propagation, and y vertically downwards.

Let % (as before) be the vertical coordinate of the centre of the given particle’s orbit;
h the horizontal coordinate of the same centre.

Let R be the radius of the rolling circle, @ the angular velocity of the tracing-arm

(=27n), so that
2#R=n
is the length of a wave, and

aR=nx ‘%i—:z\/ g——R
is the velocity of propagation.

Let 4 denote the phase of the wave at a given particle, being the angle which its
radius vector, or tracing-arm, makes with the direction of -+, that is, with a line point-
ing vertically downwards.

Let ¢ denote time, reckoned from the instant at which all the particles for which
h=0 are in the axis of y; then

Y ¢ )

Then the following equations give the coordinates of a given particle at a given instant:
k
x=h+Re Bsind; . . . . . . . . . . .. (2.)
) .
y=k+Re ®cosd. . . . . . . . . . . . . . (3)

Let  and v denote the vertical and horizontal components of the velocity of the
particle at the given instant; then

dx _k

u=p= aR.¢ ®cosd= a(y—k); . . . . . . (4)
dy _k

v=yr=—aR.¢ *sind=—a(r—h). oo (B

The well-known equation of continuity in a liquid in two dimensions is
du  dv
£+@=m C e e e e ..‘wg
and from equations (4.) and (5.) it appears that we have in the present case

du . dv dk . dh dk . Rdl
aty=i(-aty)=(-atw) - O
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In the original formule, %4 and ¢ are the independent variables. When 2 and y are
made the independent variables instead, we have, by well-known formulee,

i l'i:.‘/. I3
fl_]f.—l_;ld_m_d.'_r.‘ik- '——e—'RSine‘
de™ " " |\dk  d§ dy{— 2k
and ~ 'y e e e (8)

dz _k
B_y . _dy s --ff.%i’l_q@.
dy™ T\ dk dz =R(1—e_if)
dk

so that the equation of continuity (6.) is exactly verified.

(17.) Another mode of testing algebraically the fulfilment of the condition of con-
tinuity is the following. It is analogous to that employed by Mr. AIrY; but inasmuch
as the disturbances in the present paper are regarded as considerable compared with
the length of a wave, it takes into account quantities which, in Mr. AIRY’s investigation,
are treated as inappreciable.

Consider an indefinitely small rhomboidal particle, bounded by surfaces for which the
values of 4 and k are respectively &, h+dh, k, k4dk. Then the area of that rhomboid is

dz dy dx dy .
(G- ) ab- ab:

and the condition of continuity is that this area shall be at all times the same; that is

to say, that
d(dz' dy dx dy)_o (9.)

Upon performing the operations here indicated upon the values of the coordinates in
equations (2.) and (3.), the value of the quantity in brackets is found to be
2k
l—e®x; . . . . . . . .00 (10)
which is obviously independent of the time, and therefore fulfils the condition of con-
tinuity.

di\dh’ dk™ dk" dh

APPENDIX.

Received October 1,—Read November 27, 1862,

On the Friction between a Wave and & Wave-shaped - Solid.

Conceive that the trough between two consecutive crests of the trochoidal surface of
a series of waves is occupied, for a breadth which may be denoted by z, by a solid body
with a trochoidal surface, exactly fitting the wave-surface; that the solid body moves
“forward with a uniform velocity equal to that of the propagation of the waves, so as to
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continue always to fit the wave-surface, and that there is friction between the solid
surface and the contiguous liquid particles, according to the law which experiment has
shown to be at least approximately true, viz. varying as the surface of contact, and as
the square of the velocity of sliding.

Conceive, further, that each particle of the liquid has that pressure applied to it
which is required in order to keep its motion sensibly the same as if there were no
friction ; the solid body must of course be urged forwards by a pressure equal and oppo-
site to the resultant of all the before-mentioned pressures.

The action, amongst the liquid particles, of pressures sufficient to overcome the fric-
tion, will disturb to a certain extent the motions of the liquid particles, and the figures
of the surfaces of uniform pressure; but it will be assumed that those disturbances are
small enough to be neglected, for the purposes of the present inquiry. The smallness
of the pressures producing such disturbances, and consequently the smallness of those
disturbances themselves, may be inferred from the fact, that the friction of a current
of water over a surface of painted iron of a given area is equal to the weight of a layer
of water covering the same area, and of a thickness which is only about ‘0036 of the
height due to the velocity of the current.

Those conditions having been assumed, let it now be proposed, to find approximately
the amount of resultant pressure required to overcome the friction between the wave and
the wave-shaped solid.

This problem is to be solved by finding the mechanical work expended in overcoming
friction in an indefinitely small time d¢, and dividing that work by the distance through
which the solid moves in that time.

Taking, as before, as an independent variable the phase 4, being the angle which the
tracing-arm CB=r (fig. 1) makes with a line pointing vertically downwards, the length
of the elementary arc corresponding to an indefinitely small increment of phase d4 is

qdé,

where ¢ is taken, for brevity’s sake, to denote the normal AB.
The area of the corresponding element of the solid surface is

zqde.
The velocity of sliding of the liquid particles over that elementary surface is

aq,
&
dt’
denote the heaviness (or weight of unity of volume) of the liquid, and f'its coefficient
of friction when sliding over the given solid surface; the intensity of the friction per
unit of area is

in which a, as before, denotes —, the angular velocity of the tracing-arm. Hence let ¢

b

29
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That friction has to be overcome, during the time d¢, through the distance
aqdt=qdé.
Multiplying now together the elementary area, the intensity of the friction, and the

distance through which it is overcome in the time d#, we find the following value for the
work performed in that time in overcoming the friction at the given elementary surface,

zgdéxfe i X gdd= fg .Q'zde’.

Now during the time d?, the solid advances through the distance

aRdt=Rdd
(R, as before, being the radius of the rolling circle); and dividing the elementary portion
of work expressed above by that distance, we find the following value for an elementary
portion of the pressure required to overcome the friction,

a” q ‘
=B W)

The total pressure required to overcome the friction is found by integrating the
preceding expression throughout an entire revolution, that is to say,

a2
=f—;9ﬁ R )

To obtain this integral the following value of the square of the normal ¢ or AB is to

be substituted,
¢=R*+7r*+2Rr.cos 4,
whence

(Tpas=re(” (1+RQ+R4+4<1+RQ>R cos 0+ 4 s o8 0) d0=2eR (14t i )

and
2nfea®R3z r® ot
P="TERE (I st p)- -+« o e o (3)
The following modification of this expression is sometimes convenient :—
Let V=aR denote the velocity of advance of the solid ;
r=2=R, as before, its length, being the length of a wave;

sin B:% the sine of the greatest angle made by a tangent to the trochoidal surface

with the direction of advance; then’
_feV? 2z(1 44 sin® sk 4
=5 2(144sin*B4sin'B*). . . . . L L (4)

* This formula (neglecting sin* 3 as unimportant in practice) has been used to calculate approximately the
resistance of steam-vessels, and its results have been found to agree very closely with those of experiment, and
have also been used since 1858 by Mr. James R. Narrer and the author with complete success in practice, to
calculate beforehand the engine-power required to propel proposed vessels at given speeds. The formula has
been found to answer approximately, even when the lines of the vessel are not trochoidal, by putting for 3
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It is to be observed that the resistance P, as determined by the preceding investiga-
tion, being deduced from the amount of work performed against friction, includes not
only the longitudinal components of the direct action of friction on each element of the
surface of the solid, but the longitudinal components of the excess of the hydrostatic
pressure against the front of the solid above that against its rear, which is the indirect
effect of friction. The only quantities neglected are those arising from the disturbances
of the figures of the surfaces of equal pressure, which quantities are assumed to be
unimportant, for reasons already stated. The consideration of such quantities would intro-
duce terms into the resistance varying as the fourth and higher powers of the velocity.

Received October 22,—Read November 27, 1862.

Norg, added in October 1862.

The investigation of Mr. StoxEs (Camb. Trans. vol. viii.) proceeds to the second degree
of approximation in shallow water, and to the third degree in water indefinitely deep.
In the latter case he arrives at the result, that the crests of the waves rise higher above
the level of still water than the troughs sink below that level, by a height agreeing
with that stated in art. 14 of this paper, and that the profile of the waves is approzimately
trochoidal. '

Mr. SToKES also arrives at the conclusion, that, when the disturbance is considerable
compared with the length of a wave, there is combined with the orbital motion of each
particle a ¢ranslation which diminishes rapidly as the depth increases. No such trans-
lation has been found amongst the results of the investigation in the present paper; and
hence it would appear that Mr. STOKES’s results and mine represent two different possible
modes of wave-motion *,

the mean of the values of the greatest angle of obliquity for a series of water-lines. The method of using the
formula in practice, and a Table showing comparisons of its results with those of experiment, were communi-
cated to the British Association in 1861, and printed in the Civil Engineer and Architect’s Journal for October
of that year, and in part also in the - Mechanics’ Magazine,” ¢ The Artisan,” and ¢ The Engineer.” The ordinary
value ,of the coefficient of friction f appears to be about 0036 for water gliding over painted iron. The
quantity Az(1+4 sin® 3+ sin® 3) corresponds to what is called, in the paper referred to, the augmented surface.

* Nore added in June 1863.

The difference between the cases considered by Mr. Sroxes and by me is the following :—In Mr. Sroxes’s
investigation, the molecular rotation is null; that is to say,

1T _du\_g.
\da""dy ’
while in my investigation it is constant in each layer, being the following function of %,
, 2
dv  du arge R
%(35'—@)2‘-:—-——9——?;{’1-. . . » . v . » . » v » . . (11.)
RP—rfe B
From this last equation it follows that
di\dz~ dy ’

and therefore that the condition of continuity of pressure is verified.
MDCCCLXIIL U
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The simplicity with which an-exact result is obtained in the present paper, is entirely
due to the following peculiarity :—Instead of taking for independent variables (besides
the time) the undisturbed coordinates of a particle of liquid, there are taken two quan-
tities, 2 and %, which are functions of those coordinates, of forms which are left inde-
terminate until the end of the investigation. /% then proves to be identical with the
undisturbed horizontal coordinate; but £ proves to be a function of the undisturbed
vertical coordinate for which there is no symbol in our present notation, being the root
of the transcendental equation

2 ok
ko—k-—é—ﬁ .e -ﬁ=0’

in which %, is the undisturbed vertical coordinate (see art. 13). Hence it is evident
that, had %, instead of % been taken as the independent variable, the question of wave-
motion considered in this paper could not have been solved except by a complex and
tedious process of approximation.



